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19.5  Numeric Integration and 

Differentiation

Applications often lead to integrals whose analytic

evaluation would be very difficult or even impossible,

or whose integrand is an empirical function given by

recorded numeric values. Then we may obtain

approximate numeric values of the integral by a

numeric integration method.

continued817
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Fig.437. Geometric interpretation of a definite

integral
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Rectangular Rule. Trapezoidal Rule

The simplest formula, the rectangular rule, is

obtained if we subdivide the interval of integration a ≤

x ≤ b into n subintervals of equal length h = (b – a)/n

and in each subinterval approximate ƒ by the constant

ƒ(xj*), the value of ƒ at the midpoint xj* of the jth

subinterval (Fig. 438). Then ƒ is approximated by a

step function (piecewise constant function), the n

rectangles in Fig. 438 have the areas ƒ(x1*)h, ‥‥,
ƒ(xn*)h, and the rectangular rule is

(1)

continued817
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Fig.438. Rectangular rule
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The trapezoidal rule is generally more accurate. We

obtain it if we take the same subdivision as before and

approximate ƒ by a broken line of segments (chords)

with endpoints [a, ƒ(a)], [x1, ƒ(x1)], ‥‥, [b, ƒ(b)] on the

curve of ƒ (Fig. 439). Then the area under the curve of

ƒ between a and b is approximated by n trapezoids of

areas

continued817
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Fig.439. Trapezoidal rule
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EXAMPLE1  Trapezoidal Rule

Evaluate by means of (2) with n = 10.

Solution. J ≈ 0.1(0.5 ۰ 1.367 879 + 6.778 167) =

0.746 211 from Table 19.3.

continued818
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Table 19.3 Computations in Example 1
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Error Bounds and Estimate for the 

Trapezoidal Rule

The error ε of (2) with any n is the sum of such

contributions from the n subintervals; since h = (b –

a)/n, nh3 = n(b – a)3/n3, and (b – a)2 = n2h2, we obtain

(3)

with (suitable, unknown) t between a and b.

continued819
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Because of (3) the trapezoidal rule (2) is also written

(2*)

Error Bounds are now obtained by taking the largest

value for ƒ", say, M2, and the smallest value, M2*, in

the interval of integration. Then (3) gives (note that K

is negative)

(4)

continued819
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Error Estimation by Halving h is advisable if h" is
very complicated or unknown, for instance, in the case
of experimental data. Then we may apply the Error
Principle of Sec. 19.1. That is, we calculate by (2), first
with h, obtaining, say, J = Jh + εh, and then with 1/2h,
obtaining J = Jh/2 + εh/2. Now if we replace h2 in (3) with
(1/2h)2, the error is multiplied by 1/4. Hence εh/2 ≈ 1/4εh

(not exactly because t may differ). Together, Jh/2 + εh/2

= Jh + εh ≈ Jh + 4εh/2. Thus Jh/2 – Jh = (4 – 1)εh/2.
Division by 3 gives the error formula for Jh/2

(5)

819
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EXAMPLE2 Error Estimation for the Trapezoidal

Rule by (4) and (5)

Estimate the error of the approximate value in

Example 1 by (4) and (5).

Solution. (A) Error bounds by (4). By differentiation,

. Also, ƒ'"(x) > 0 if 0 < x < 1, so that

the minimum and maximum occur at the ends of the

interval. We compute M2 = ƒ"(1) = 0.735 759 and M2*

= ƒ"(0) = –2. Furthermore, K = –1/1200, and (4) gives

continued819
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Hence the exact value of J must lie between

Actually, J = 0.746 824, exact to 6D.

(B) Error estimate by (5). Jh = 0.746211 in Example

1. Also,

Hence εh/2 = 1/3 (Jh/2 – Jh) = 0.000153 and Jh/2 + εh/2 =

0.746824, exact to 6D.
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Simpson’s Rule of Integration

To derive Simpson’s rule, we divide the interval of

integration a ≤ x ≤ b into an even number of equal

subintervals, say, into n = 2m subintervals of length h

= (b – a)/(2m), with endpoints x0 (= a), x1, ‥‥, x2m-1, x2m

(= b); see Fig. 440. We now take the first two

subintervals and approximate ƒ(x) in the interval x0 ≤ x

≤ x2 = x0 + 2h by the Lagrange polynomial p2(x)

through (x0, ƒ0), (x1, ƒ1), (x2, ƒ2), where ƒj = ƒ(xj).

continued820
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Fig.440. Simpson’s rule
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We obtain Simpson’s rule

(7)

where h = (b – a)/(2m) and ƒj = ƒ(xj). Table 19.4 shows

an algorithm for Simpson’s rule.
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Table 19.4  Simpson’s Rule of Integration
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Error of Simpson’s Rule (7). If the fourth derivative

ƒ(4) exists and is continuous on a ≤ x ≤ b, the error of

(7), call it εS, is

(8)

here t is a suitable unknown value between a and b.

This is obtained similarly to (3). With this we may also

write Simpson’s rule (7) as

continued821
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(7**)

Error Bounds. By taking for ƒ(4) in (8) the maximum

M4 and minimum M4* on the interval of integration we

obtain from (8) the error bounds (note that C is

negative)

(9)
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Numeric Stability with respect to rounding is another

important property of Simpson’s rule. Indeed, for the

sum of the roundoff errors j of the 2m + 1 values ƒj in

(7) we obtain, since h = (b – a)/2m,

continued822
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where u is the rounding unit (u = 1/2 ۰ 10-6 if we round

off to 6D; see Sec. 19.1). Also 6 = 1 + 4 + 1 is the sum

of the coefficients for a pair of intervals in (7); take m =

1 in (7) to see this. The bound (b – a)u is independent

of m, so that it cannot increase with increasing m, that

is, with decreasing h. This proves stability.
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EXAMPLE3 Simpson’s Rule. Error Estimate

Evaluate by Simpson’s rule with 2m = 10

and estimate the error.

Solution. Since h = 0.1, Table 19.5 gives

continued823
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Estimate of error. Differentiation gives

. By considering the derivative ƒ(5) of ƒ(4)

we find that the largest value of ƒ(4) in the interval of

integration occurs at 0 and the smallest value at

. Computation gives the values M4 =

ƒ(4)(0) = 12 and M4* = ƒ(4)(x*) = –7.419. Since 2m = 10

and b – a = 1, we obtain C = –1/1 800 000 = –0.000

000 56. Therefore, from (9),

continued823
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Hence J must lie between 0.746 825 – 0.000 007 =

0.746 818 and 0.746 825 + 0.000 005 = 0.746 830, so

that at least four digits of our approximate value are

exact. Actually, the value 0.746 825 is exact to 5D

because J = 0.746 824 (exact to 6D).

Thus our result is much better than that in Example 1

obtained by the trapezoidal rule, whereas the number

of operations is nearly the same in both cases.

continued823
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Table 19.5  Computations in Example 3
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EXAMPLE4 Determination of n = 2m in Simpson’s

Rule from the Required Accuracy

What n should we choose in Example 3 to get 6D-
accuracy?

Solution. Using M4 = 12 (which is bigger in absolute
value than M4*), we get from (9), with b – a = 1 and the
required accuracy,

Hence we should choose n = 2m = 20. Do the
computation, which parallels that in Example 3.

Note that the error bounds in (4) or (9) may sometimes
be loose, so that in such a case a smaller n = 2m may
already suffice.
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EXAMPLE5 Error Estimation for Simpson’s 

Rule by Halving

Integrate ƒ(x) = 1/4πx4 cos 1/4πx from 0 to 2 with h =

1 and apply (10).

Solution. The exact 5D-value of the integral is J =

1.25953. Simpson’s rule gives

continued824
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Hence (10) gives εh/2 = 1/15(1.22974 – 0.74048) =

0.032617 and thus J ≈ Jh/2 + εh/2 = 1.26236, with an

error –0.00283, which is less in absolute value than

1/10 of the error 0.02979 of Jh/2. Hence the use of (10)

was well worthwhile.
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Adaptive Integration

The idea is to adapt step h to the variability of ƒ(x).

That is, where ƒ varies but little, we can proceed in

large steps without causing a substantial error in the

integral, but where ƒ varies rapidly, we have to take

small steps in order to stay everywhere close enough

to the curve of ƒ.
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EXAMPLE6 Adaptive Integration with Simpson’s

Rule

Integrate ƒ(x) = 1/4πx4 cos 1/4πx from x = 0 to 2 by

adaptive integration and with Simpson’s rule and

TOL[0, 2] = 0.0002.

Solution. Table 19.6 shows the calculations. Figure

441 shows the integrand ƒ(x) and the adapted

intervals used. The first two intervals ([0, 0.5], [0.5,

1.0]) have length 0.5, hence h = 0.25 [because we use

2m = 2 subintervals in Simpson’s rule (7**)]. The next

two intervals ([1.00, 1.25], [1.25, 1.50]) have length

0.25 (hence h = 0.125) and the last four intervals have

length 0.125.

continued824
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Sample computations. For 0.740480 see Example 5.

Formula (10) gives (0.123716 – 0.122794)/15 =

0.000061. Note that 0.123716 refers to [0, 0.5] and

[0.5, 1], so that we must subtract the value

corresponding to [0, 1] in the line before. Etc. TOL[0,

2] = 0.0002 gives 0.0001 for subintervals of length 1,

0.00005 for length 0.5, etc. The value of the integral

obtained is the sum of the values marked by an

asterisk (for which the error estimate has become less

than TOL). This gives

continued824
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The exact 5D-value is J = 1.25953. Hence the error is

0.00017. This is about 1/200 of the absolute value of

that in Example 5. Our more extensive computation

has produced a much better result.

continued825
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Table 19.6  Computations in Example 6

continued825
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Table 19.6  Computations in Example 6
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Fig.441. Adaptive integration in Example 6
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Gauss Integration Formulas

Maximum Degree of Precision

(11)

with fixed n, and t = ±1 obtained from x = a, b by

setting x = 1/2 [a(t – 1) + b(t + 1)]. Then we determine

the n coefficients A1, ‥‥, An and n nodes t1, ‥‥, tn so

that (11) gives exact results for polynomials of degree

k as high as possible. Since n + n = 2n is the number

of coefficients of a polynomial of degree 2n – 1, it

follows that k ≤ 2n – 1.

continued826
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Gauss has shown that exactness for polynomials of
degree not exceeding 2n – 1 (instead of n – 1 for
predetermined nodes) can be attained, and he has
given the location of the tj (= the jth zero of the
Legendre polynomial Pn in Sec. 5.3) and the
coefficients Aj which depend on n but not on ƒ(t), and
are obtained by using Lagrange’s interpolation
polynomial, as shown in Ref. [E5] listed in App. 1. With
these tj and Aj, formula (11) is called a Gauss
integration formula or Gauss quadrature formula. Its
degree of precision is 2n – 1, as just explained. Table
19.7 gives the values needed for n = 2, ‥‥, 5. (For
larger n, see Ref. [GR1] in App. 1.)

continued826
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Table 19.7 Gauss Integration: Nodes tj and 

Coefficients Aj
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EXAMPLE7 Gauss Integration Formula with n = 3

Evaluate the integral in Example 3 by the Gauss

integration formula (11) with n = 3.

Solution. We have to convert our integral from 0 to 1

into an integral from –1 to 1. We set x = 1/2 (t + 1).

Then dx = 1/2 dt, and (11) with n = 3 and the above

values of the nodes and the coefficients yields

continued826
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(exact to 6D: 0.746 825), which is almost as accurate

as the Simpson result obtained in Example 3 with a

much larger number of arithmetic operations. With 3

function values (as in this example) and Simpson’s

rule we would get 1/6 (1 + 4e-0.25 + e-1) = 0.747 180,

with an error over 30 times that of the Gauss

integration.
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EXAMPLE8 Gauss Integration Formula with n =

4 and 5

Integrate ƒ(x) = 1/4πx4 cos 1/4πx from x = 0 to 2 by

Gauss. Compare with the adaptive integration in

Example 6 and comment.

Solution. x = t + 1 gives ƒ(t) 1/4π (t + 1)4 cos (1/4π (t

+ 1)), as needed in (11). For n = 4 we calculate (6S)

continued827
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The error is 0.00003 because J = 1.25953 (6S).

Calculating with 10S and n = 4 gives the same result;

so the error is due to the formula, not rounding. For n =

5 and 10S we get J ≈ 1.25952 6185, too large by the

amount 0.00000 0250 because J = 1.25952 5935

(10S). The accuracy is impressive, particularly if we

compare the amount of work with that in Example 6.
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