19.5 Numeric Integration and
Differentiation

* Applications often lead to integrals whose analytic
evaluation would be very difficult or even impossible,
or whose integrand is an empirical function given by
recorded numeric values. Then we may obtain
approximate numeric values of the integral by a
numeric integration method.
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F19.437. Geometric interpretation of a definite
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y =1(x)




Rectangular Rule. Trapezoidal Rule

*The simplest formula, the rectangular rule, is
obtained If we subdivide the interval of integration a <
X < b Into n subintervals of equal length h = (b — a)/n
and in each subinterval approximate f by the constant
f(x*), the value of f at the midpoint x* of the jth
subinterval (Fig. 438). Then f is approximated by a
step function (piecewise constant function), the n
rectangles in Fig. 438 have the areas f(x;")h, ...,
f(x,*)h, and the rectangular rule is

b o
1) 7= f f) dx =~ h[f(x™) + fO™) + - - - + f(x,)] (h _ 0 (1) .

n
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F19.438. Rectangular rule
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* The trapezoidal rule is generally more accurate. We
obtain it if we take the same subdivision as before and
approximate f by a broken line of segments (chords)
with endpoints [a, f(a)], [X;, f(X)], -..., [b, f(b)] on the
curve of f (Fig. 439). Then the area under the curve of
f between a and b is approximated by n trapezoids of
areas

s[f(@) + fxp]h, s[FC) + fx)]h, SR s[fC._1) + fD]h.
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F19.439. Trapezoidal rule

Y
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EXAMPLE1 Trapezoidal Rule

1

* Evaluate ;= f " 4x by means of (2) with n = 10.

0

* Solution. J = 0.1(0.5 + 1.367 879 + 6.778 167) =
0.746 211 from Table 19.3.
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Table 19.3 Computations in Example 1

J X; sz —a
0 0 0 1.000 000
1 0.1 0.01 0.990 050
2 0.2 0.04 0.960 789
3 0.3 0.09 0.913 931
4 0.4 0.16 0.852 144
5 0.5 0.25 0.778 801
6 0.6 0.36 0.697 676
7 0.7 0.49 0.612 626
8 0.8 0.64 0.527 292
9 0.9 0.81 0.444 858
10 1.0 1.00 0.367 879
Sums 1.367 879 6.778 167
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Error Bounds and Estimate for the
Trapezoidal Rule

*The error € of (2) with any n is the sum of such
contributions from the n subintervals; since h = (b —
a)/n, nh3 = n(b — a)3/n3, and (b — a)? = n°h?, we obtain

b—-aP ,. = b=—a ..
22 107 o

3) €=

with (suitable, unknown) t between a and b.
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* Because of (3) the trapezoidal rule (2) is also written

b—a
12

b
(2*) J = f foydx = hl3fa@) + fx) + -+ -+ fx,_1) + 3f(b)] — 21" ().

* Error Bounds are now obtained by taking the largest
value for f", say, M,, and the smallest value, M,*, in
the interval of integration. Then (3) gives (note that K
IS hegative)

_(b—(l)g_ b — a

121> 12

h?.

4) KM, =e=KM," where K=
(
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X Error Estimation by Halving h is advisable if h" is
very complicated or unknown, for instance, in the case
of experimental data. Then we may apply the Error
Principle of Sec. 19.1. That is, we calculate by (2), first
with h, obtaining, say, J = J,, + &,, and then with 1/2h,
obtaining J = J,, + €,,,. Now if we replace h? in (3) with
(1/2h)?, the error is multiplied by 1/4. Hence ¢, = 1/4¢,
(not exactly because t may differ). Together, J,, + €.,
=J, + & = J, +4¢g,,. Thus J,, — J, = (4 — 1)g..
Division by 3 gives the error formula for J, ,

1
(5) €n2 = 3 (Jns2 — JIn).

(f) BxgEsE /S P 819



EXAMPLE?2 Error Estimation for the Trapezoidal |2
Rule by (4) and (5)

X Estimate the error of the approximate value in
Example 1 by (4) and (5).

* Solution. (A) Error bounds by (4). By differentiation,
o) = 22x2 — De™*. Also, f"(x) > 0if 0 < x <1, so that
the minimum and maximum occur at the ends of the

interval. We compute M, = f"(1) = 0.735 759 and M,*
= f"(0) = -2. Furthermore, K = -1/1200, and (4) gives

—0.000 614 = € = 0.001 667.
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Hence the exact value of J must lie between

0.746 211 — 0.000 614 = 0.745 597 and 0.746 211 + 0.001 667 = 0.747 878.

* Actually, J = 0.746 824, exact to 6D.

*(B) Error estimate by (5). J,, = 0.746211 in Example
1. Also,

19
- £ l
T = 0.05 {2 e (31207 4 3 1+ 0.367879)} = 0.746671.
j=1

Hence g, = 1/3 (J,,, — J;,) = 0.000153 and J,,, + &, =
0.746824, exact to 6D.
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Simpson’s Rule of Integration

*To derive Simpson’s rule, we divide the interval of
Integration a < X < b into an even number of equal
subintervals, say, into n = 2m subintervals of length h
= (b — a)/(2m), with endpoints X, (= @), X{, «ess Xom.15 Xom
(= b); see Fig. 440. We now take the first two
subintervals and approximate f(x) in the interval x, < X
< X, = X, + 2h by the Lagrange polynomial p,(x)
through (X, fo), (X1, f1), (Xa, f2), where f; = f(x)).
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F19.440. Simpson’s rule

First parabola
ﬂ _‘\/Second parabola

y=1f(x)

Last parabola

() BKEEE/E P 820



* We obtain Simpson’s rule

b
/
(7)  [@dr= T Go+ 4f1 + 2+ Af + -+ + 2s + 4fams + Fau

where h = (b — a)/(2m) and f; = f(x). Table 19.4 shows
an algorithm for Simpson'’s rule.
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Table 19.4 Simpson’s Rule of Integration

ALGORITHM SIMPSON (a, b, m, fo. f1. = s fou)

This algorithm computes the integral J = [2f(x) dx from given values f; = flx) at
equidistant xo = a, x; = xo + h,* * *, X9, = xo + 2mh = b by Simpson’s rule (7),
where h = (b — a)/(2m).

INPUT: a, b, m, fo." ", fom

OUTPUT: Approximate value JofJ

Compute 5o = fo + fom
si=f1+fs+ -+ fomo1
So = fat fat Tt fam—

h=({b—a)l2m

~ h
J = g (SO + 481 + 252)

OUTPUT J. Stop.
End SIMPSON
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X Error of Simpson’s Rule (7). If the fourth derivative
@ exists and is continuous on a < x < b, the error of
(7), call it g, IS

b — a) (b — a)

— *(4) ’I‘) —

= — ;'4 (D) 7.
(8) e 180(2m)* 180 e AR

here t is a suitable unknown value between a and b.
This is obtained similarly to (3). With this we may also
write Simpson’s rule (7) as
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b (b — a)

h
(7% [ forde = S (o + 4f1 + -+ + fo) =

]'4 ~(4) ? .
) T (1)

* Error Bounds. By taking for f® in (8) the maximum
M, and minimum M,* on the interval of integration we
obtain from (8) the error bounds (note that C is
negative)

(b — a)° b-a

CM, = e = CM,* h G- = — = he.
(9) 4= € . where 180(2m)* T
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* Numeric Stability with respect to rounding is another
Important property of Simpson’s rule. Indeed, for the
sum of the roundoff errors | of the 2m + 1 values fj In
(7) we obtain, since h = (b — a)/2m,

h (b —a)
— leg + de; + - - -+ €] = 6mu = (b — a)u
3 3-2m
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where u is the rounding unit (u = 1/2 « 10 if we round
off to 6D; see Sec. 19.1). Also 6 =1+ 4 + 1 is the sum
of the coefficients for a pair of intervals in (7); take m =
1 in (7) to see this. The bound (b — a)u is independent
of m, so that it cannot increase with increasing m, that
IS, with decreasing h. This proves stability.
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EXAMPLES3 Simpson’s Rule. Error Estimate

1
(" . ] )
X Evaluate ;= | " 4x by Simpson’s rule with 2m = 10
0
and estimate the error.

* Solution. Since h =0.1, Table 19.5 gives

0.1
J =~ ES (1.367 879 + 4-3.740 266 + 2-3.037901) = 0.746 825.
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* Estimate of error. Differentiation gives f¥x) = 44x? —
12:% + 3)e~* . By considering the derivative f® of f@
we find that the largest value of f® in the interval of
Integration occurs at 0 and the smallest value at  x* =
2.5 — 05V10)Y2 . Computation gives the values M, =
f@(0) =12 and M* = f®)(x*) = —=7.419. Since 2m = 10
and b —a =1, we obtain C = -1/1 800 000 = —0.000
000 56. Therefore, from (9),

—0.000 007 = eg = 0.000 005.
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* Hence J must lie between 0.746 825 — 0.000 007 =
0.746 818 and 0.746 825 + 0.000 005 = 0.746 830, so
that at least four digits of our approximate value are
exact. Actually, the value 0.746 825 is exact to 5D
because J = 0.746 824 (exact to 6D).

* Thus our result is much better than that in Example 1
obtained by the trapezoidal rule, whereas the number
of operations is nearly the same in both cases.
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Table 19.5 Computations in Example 3

J X; x;? e~

0 0 0 1.000 000
1 0.1 0.01 0.990 050
2 0.2 0.04 0.960 789
3 0.3 0.09 0.913 931

4 0.4 0.16 0.852 144
5 0.5 0.25 0.778 801

6 0.6 0.36 0.697 676
7 0.7 0.49 0.612 626
8 0.8 0.64 0.527 292
9 0.9 0.81 0.444 858

10 1.0 1.00 0.367 879

Sums 1.367 879 3.740 266 3.037 901
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EXAMPLE4 Determination of n = 2m in Simpson’s
Rule from the Required Accuracy

*What n should we choose in Example 3 to get 6D-
accuracy?

* Solution. Using M, = 12 (which is bigger in absolute
value than M,*), we get from (9), with b —a =1 and the
required accuracy,

12 I 2-10%-12 |M*
ICM,| = 7 = 71077 thus m = 1 = 9.55.
180 2m)* 2 180 - 2

Hence we should choose n = 2m = 20. Do the
computation, which parallels that in Example 3.

* Note that the error bounds in (4) or (9) may sometimes
be loose, so that in such a case a smaller n = 2m may
already suffice.
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EXAMPLEDS Error Estimation for Simpson’s
Rule by Halving

X Integrate f(x) = 1/41rx* cos 1/4mx from 0 to 2 with h =
1 and apply (10).

* Solution. The exact 5D-value of the integral is J
1.25953. Simpson’s rule gives

I, = L[f0) + 4f(1) + £(2)] = 10 + 4-0.555360 + 0) = 0.740480,

1 1 3
e = o [f(()) + 4f(5) + 2f(1) + 4f(5) + f(2):|

I

=% [0 + 4-0.045351 + 2-0.555361 + 4-1.521579 + 0] = 1.22974.
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*Hence (10) gives ¢, = 1/15(1.22974 — 0.74048) =
0.032617 and thus J = J,, + &, = 1.26236, with an
error —0.00283, which is less in absolute value than
1/10 of the error 0.02979 of J,,,. Hence the use of (10)
was well worthwhile.
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Adaptive Integration

*The idea is to adapt step h to the variability of f(x).
That Is, where f varies but little, we can proceed In

large ste
Integral,
small ste

0s without causing a substantial error in the
out where f varies rapidly, we have to take

0S in order to stay everywhere close enough

to the curve of f.
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EXAMPLEG Adaptive Integration with Simpson’s |2
Rule

X Integrate f(x) = 1/41mx* cos 1/4mx from x = 0 to 2 by
adaptive integration and with Simpson’s rule and
TOL[O, 2] = 0.0002.

* Solution. Table 19.6 shows the calculations. Figure
441 shows the integrand f(x) and the adapted
Intervals used. The first two intervals ([0, 0.5], [0.5,
1.0]) have length 0.5, hence h = 0.25 [because we use
2m = 2 subintervals in Simpson’s rule (7**)]. The next
two intervals ([1.00, 1.25], [1.25, 1.50]) have length
0.25 (hence h = 0.125) and the last four intervals have
length 0.125.
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* Sample computations. For 0.740480 see Example 5.
Formula (10) gives (0.123716 - 0.122794)/15 =
0.000061. Note that 0.123716 refers to [0, 0.5] and
[0.5, 1], so that we must subtract the value
corresponding to [0, 1] in the line before. Etc. TOLJO,
2] = 0.0002 gives 0.0001 for subintervals of length 1,
0.00005 for length 0.5, etc. The value of the integral
obtained is the sum of the values marked by an
asterisk (for which the error estimate has become less
than TOL). This gives

J = 0.123716 + 0.528895 + 0.388263 + 0.218483 = 1.25936.
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* The exact 5D-value is J = 1.25953. Hence the error is
0.00017. This is about 1/200 of the absolute value of
that in Example 5. Our more extensive computation
has produced a much better result.
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Table 19.6 Computations in Example 6

Interval Integral Error (10) TOL Comment
[0, 2] 0.740480 0.0002
[0, 1] 0.122794
[1, 2] 1.10695
Sum = 1.22974 0.032617 0.0002 Divide further
[0.0, 0.5] 0.004782
[0.5, 1.0] 0.118934
Sum = 0.123716% 0.000061 0.0001 TOL reached
[1.0, 1.5] 0.528176
[1.5, 2.0] 0.605821
Sum = 1.13300 0.001803 0.0001 Divide further
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Table 19.6 Computations in Example 6

Interval Integral Error (10) TOL Comment

[1.00, 1.25] 0.200544
[1.25, 1.50] 0.328351

Sum = 0.528895% 0.000048 0.00005 TOL reached
[1.50, 1.75] 0.388235
[1.75, 2.00] 0.218457

Sum = 0.606692 0.000058 0.00005 Divide further
[1.500, 1.625] 0.196244
[1.625, 1.750] 0.192019

Sum = 0.388263% 0.000002 0.000025 TOL reached
[1.750, 1.875] 0.153405
[1.875, 2.000] 0.065078

Sum = 0.218483%* 0.000002 0.000025 TOL reached
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F19.441. Adaptive integration in Example 6
flx)
1.5
1.0

0.5
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Gauss Integration Formulas
Maximum Degree of Precision

1 n
*(11) f lf(f) dt ~ > Ajf; | = f(1))]
_ =

with fixed n, and t = £1 obtained from x = a, b by
setting x = 1/2 [a(t — 1) + b(t + 1)]. Then we determine
the n coefficients A, ..., A, and n nodes t,, ..., t, SO
that (11) gives exact results for polynomials of degree
k as high as possible. Since n + n = 2n is the number
of coefficients of a polynomial of degree 2n — 1, it
follows that k < 2n — 1.
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* Gauss has shown that exactness for polynomials of
degree not exceeding 2n — 1 (instead of n — 1 for
predetermined nodes) can be attained, and he has
given the location of the t (= the jth zero of the
Legendre polynomial P, |n Sec. 5.3) and the
coefficients A; which depend on n but not on f(t), and
are obtalned by using Lagrange’s interpolation
polynomial, as shown in Ref. [E5] listed in App. 1. With
these t;, and A;, formula (11) is called a Gauss
mtegratlon formula or Gauss quadrature formula. Its
degree of precision is 2n — 1, as just explained. Table
19.7 gives the values needed forn = 2, ..., 5. (For
larger n, see Ref. [GR1] in App. 1.)
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Table 19.7 Gauss Integration: Nodes t; and
Coefficients A

Nodes L

Coefficients Aj

Degree of Precision

—0.57735 02692

0.57735 02692

1
1

—0.77459 66692

0
0.77459 66692

0.55555 55556
0.88888 88889
0.55555 55556

—0.86113 63116
—0.33998 10436

0.33998 10436
0.86113 63116

0.34785 48451
0.65214 51549
0.65214 51549
0.34785 48451

—0.90617 98459
—0.53846 93101

0
0.53846 93101
0.90617 98459

0.23692 68851
0.47862 86705
0.56888 88889
0.47862 86705
0.23692 68851
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EXAMPLE/7 Gauss Integration Formula with n =3

* Evaluate the integral in Example 3 by the Gauss
Integration formula (11) with n = 3.

* Solution. We have to convert our integral from 0 to 1
iInto an integral from -1 to 1. We set x = 1/2 (t + 1).
Then dx = 1/2 dt, and (11) with n = 3 and the above
values of the nodes and the coefficients yields

1

(—x?) dx = 1 L) a
foexpx)(x—zf_lexp 1 ¢ ) ¢

1| 5 I [ 3)\2 8 I 5 I /32
~—| = -—(1= =)+ = -— )+ = ——|1+ /= = 0. 5
2|:9 exp( 4(l N i)) 0 exp( 4) 9 exp( 4(l N 5) ).746 81
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(exact to 6D: 0.746 825), which is almost as accurate
as the Simpson result obtained in Example 3 with a
much larger number of arithmetic operations. With 3
function values (as in this example) and Simpson’s
rule we would get 1/6 (1 + 4e02 + e1) = 0.747 180,
with an error over 30 times that of the Gauss
Integration.
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EXAMPLES8 Gauss Integration Formula with n =
4 and 5

X Integrate f(x) = 1/41mx* cos 1/4mx from x = 0 to 2 by
Gauss. Compare with the adaptive Integration In
Example 6 and comment.

* Solution. x =t + 1 gives f(t) 1/41 (t + 1)* cos (1/4T (t
+ 1)), as needed in (11). For n = 4 we calculate (6S)

J=A1f1 + -+ Asfg = A1(f1 + fa) + Ax(fa + fa)
= 0.347855(0.000290309 + 1.02570) + 0.652145(0.129464 + 1.25459) = 1.25950.
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*The error is 0.00003 because J = 1.25953 (6S).
Calculating with 10S and n = 4 gives the same result;
so the error is due to the formula, not rounding. For n =
5 and 10S we get J = 1.25952 6185, too large by the
amount 0.00000 0250 because J = 1.25952 5935
(10S). The accuracy is impressive, particularly if we
compare the amount of work with that in Example 6.
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